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Abstract

In January 2004, NASA’s twin Mars Exploration Rovers (MERs),Spirit andOp-
portunity, began searching the surface of Mars for evidence of past water activity.
In order to localize and approach scientifically interesting targets, the rovers employ
an on-board navigation system. Given the latency in sending commands from Earth
to the Martian rovers (and in receiving return data), a high level of navigational au-
tonomy is desirable. Autonomous navigation with hazard avoidance (AutoNav) is
currently performed using a local path planner called GESTALT (Grid-based Esti-
mation of Surface Traversability Applied to Local Terrain) that incorporates terrain
and obstacle information generated from stereo cameras. GESTALT works well at
guiding the rovers around narrow and isolated hazards, however, it is susceptible
to failure when clusters of closely spaced, non-traversable rocks form extended ob-
stacles. In May 2005, a new technology task was initiated at the Jet Propulsion
Laboratory to address this limitation. Specifically, a version of the Field D* global
path planner (Ferguson and Stentz, 2006) was integrated into MER flight software,
enabling simultaneous local and global planning during AutoNav. A revised ver-
sion of AutoNav was then uploaded to the rovers during the summer of 2006. In
this paper we describe how this integration of global planning into the MER flight
software was performed, and provide results from both the MER Surface System
TestBed (SSTB) rover and five fully autonomous runs byOpportunityon Mars.



Figure 1: Artist’s rendition of a Mars Exploration Rover.Courtesy NASA/JPL-Caltech.

1 Introduction

In January 2004, two robotic vehicles landed on Mars as part of NASA’s Mars Exploration Rover
(MER) mission (see Figure 1). Since that time, these two rovers,Spirit (Leger et al., 2005) and
Opportunity, (Biesiadecki et al., 2005), have been searching the Martian surface for evidence of
past water activity. Directing rover activities poses an interesting challenge for scientists and en-
gineers. It can take as long as 26 minutes for a signal from Earth to reach Mars (and vice-versa).
This makes teleoperation of the rovers infeasible. In addition, line-of-sight and power constraints
further complicate the situation. In order to overcome these factors, each rover is sent a sequence
of commands at the beginning of each Martian day (sol). This command sequence lays out all
activities to be performed by the rover during the sol. The rover then executes the command se-
quence without any human intervention. In general, before the rover enters into a sleep mode for
the night, it will send data back to Earth. This data is then used to plan activities for the following
sol. Due to the fact that commands are received only once per sol, rover autonomy is critical. The
more autonomous the rover is, the more activities it can accomplish each sol. Here, we will focus
our attention on the navigation system, but this observation applies to all rover behaviors.

The purpose of the navigation system is to move the rover around the Martian surface in order
to locate and approach scientifically interesting targets. To begin the process, engineers on Earth
identify a goal location that they would like the rover to reach. Typically, images returned by
the rover are used to select this goal. There are two main methods that can be used to reach this
goal. The first and simplest is the blind drive. During a blind drive, the rover does not attempt
to identify hazardous terrain and simply drives toward the goal location. The second option is
autonomous navigation with hazard avoidance (AutoNav). In this case, the rover autonomously
identifies hazards, such as large rocks, and steers around them on its way to the goal.

There are advantages and disadvantages to each approach. During a blind drive, the rover can cover
a larger distance in a given time period since it does not have to process imagery of the surrounding
terrain. However, this means that the engineers on Earth must verify that the terrain between the
rover and the goal is free from hazards before commanding the drive. On the other hand, AutoNav



is slower, but can keep the rover safe even in regions unseen by engineers on Earth. Often, the two
methods are utilized in tandem. First a blind drive is commanded as far out as engineers can be
sure of safety. Then AutoNav is used to make additional progress through unknown terrain. Thus,
the increased autonomy provided by AutoNav allows much more forward progress to be made
during a sol.

Although AutoNav is usually able to guide the rover to the goal, there are known circumstances
where it is susceptible to failure, and the rover does not reach the goal. In July 2006, a new version
of the MER flight software was successfully uploaded to the rovers. Due to the complexity and
number of changes, a software patch was infeasible and a full flight software load was necessary
(Greco and Snyder, 2005). In addition to bug fixes and other improvements, four new technologies
were included. These new technologies were visual target tracking, on-board dust devil and cloud
detection, autonomous placement of the instrument deployment device, and a global path planner
designed to overcome some of the shortcomings of AutoNav (Schenker, 2006). A description of
this planner, its integration into the flight software, test results on Earth, and test results on Mars
are described in the remainder of this paper.

2 Autonomous Navigation System

2.1 Overview

The purpose of AutoNav is to enable the rover to safely traverse unknown terrain. AutoNav is
based on the GESTALT (Grid-based Estimation of Surface Traversability Applied to Local Terrain)
algorithm (Goldberg et al., 2002), (Biesiadecki and Maimone, 2006). AutoNav uses stereo image
pairs captured by the rover’s on-board camera system to gather geometric information about the
surrounding terrain. These images are processed to create a model of the local terrain. Part of this
model is a goodness map. This goodness map is grid-based and represents an overhead view of a
model of the terrain. Each grid cell in the map contains a goodness value. High goodness values
indicate easily traversable terrain, and low goodness values indicate hazardous areas. The map is
constructed in configuration space, meaning that hazards are expanded by the rover radius in all
directions before their representations are included in the map. This allows the rover to be treated
as a point in future computations.

Once the terrain has been evaluated, a set of candidate arcs (short paths from the current rover
location) is considered. Nominally, the arc set consists of forward and backward arcs of varying
curvature, as well as point turns to a variety of headings. Each arc is evaluated based on three
criteria: avoiding hazards, minimizing steering time, and reaching the goal. For each arc, a vote
based on each of these criteria is generated. The goodness map is used to generate the hazard
avoidance vote. Arcs that travel through cells that are difficult or dangerous to traverse receive
low votes. Steering bias votes are constructed based on the amount of time that is needed to turn
the wheels from the current heading to the heading required to execute the candidate arc. Arcs
requiring less steering time receive higher votes. Waypoint votes are constructed based upon the
final criteria: reaching the goal. Arcs that move the rover closer to the goal location receive higher
waypoint votes. The three votes are then weighted and merged to generate a final vote for each arc.
Once votes have been generated, the best arc is selected for execution. The rover then drives a short,



Figure 2: On sol 108,Spirit was unable to autonomously navigate to a goal location on the other
side of this cluster of rocks. This image was captured by one of the front hazard avoidance cameras
mounted on the body of the rover. A portion of the scene is in a shadow cast by the rover.Courtesy
NASA/JPL-Caltech.

predetermined distance along the selected arc. This process is repeated (evaluate terrain, select arc,
drive) until the goal is reached, a prescribed timeout period expires, or a fault is encountered.

2.2 Shortcomings

AutoNav is very good at keeping the rover safe and usually gets the rover to the goal location.
However, in some instances AutoNav is not able to reach the goal. Figure 2 illustrates one such
situation. In this case,Spirit spent approximately 105 minutes and 47 drive steps trying to get
around a cluster of rocks, but was unable to autonomously do so. The cause of this failure was
the simple method used to construct waypoint votes by AutoNav. Arcs that decrease the Euclidean
distance between the rover and the goal always receive higher votes. This biases the rover to take
straight-line paths to its goals. When the waypoint votes are then merged with hazard avoidance
votes, some deviation to get around small hazards is possible. However, the amount of deviation
that can occur is fairly minimal. When the rover encounters a large hazard in its path, the waypoint
votes and hazard avoidance votes conflict severely. The hazard avoidance votes will not allow the
rover to drive through the unsafe area, and the waypoint votes will not allow enough deviation
from the straight-line path for the rover to get around the hazard. As a result, the rover becomes
stuck and is unable to reach the goal.

3 Global Path Planning

For improved performance, a better waypoint vote metric is needed; something that is more ac-
curate than Euclidean distance. A better metric can be produced by planning paths to the goal
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Figure 3: (a) The typical transitions (in black) allowed from a node (shown at the center) in a
uniform grid. Notice that only headings of45 degree increments are available. (b) Using linear
interpolation, the path cost of any points′ on an edge between two grid nodess1 ands2 can be
approximated. This can be used to plan paths through grids that are not restricted to just the45
degree heading transitions. Figure reproduced from (Ferguson and Stentz, 2006).

that take into account all of the obstacles in the environment. Typically, the environment will be
only partially-known to the rover, and thus complete information regarding the obstacles will not
be available. However, incorporating obstacle information thatis available into these global plans
typically provides much better estimates than Euclidean distance, and these estimates only improve
in accuracy as more information is acquired during the rover’s traverse. Such an approach has been
widely used in outdoor mobile robot navigation (Kelly, 1995; Stentz and Hebert, 1995; Brock and
Khatib, 1999; Singh et al., 2000; Kolski et al., 2006; Kelly et al., 2006).

We have extended the AutoNav system to use the Field D* algorithm to generate these global paths.
Field D* is a planning algorithm that uses interpolation to provide direct, low-cost paths through
two-dimensional, grid-based representations of an environment (Ferguson and Stentz, 2006). Each
grid cell is assigned a cost of traversal. Based upon these costs, the algorithm generates a path
between two locations, with the aim of minimizing the cost of traversing that path.

Although two-dimensional grids present an easy and computationally efficient way to represent the
environment, a major limitation of classic grid-based planning algorithms is the restricted nature of
the paths produced. For example, classic grid-based planners usually restrict paths to transitioning
between adjacent grid cell centers or corners, resulting in paths that are suboptimal in length and
involve unnecessary turning. Figure 3(a) shows the typical transitions allowed from a particular
grid cell.

The Field D* algorithm removes this restriction and allows paths to transition through any point
on a neighboring grid celledge, rather than just the neighboring grid cell corners or centers. To do
this efficiently, it uses linear interpolation to approximate the path cost to any point along a grid
cell edge, given the path costs to the endpoints. Equation 1 and Figure 3(b) illustrate how linear
interpolation is used to provide an estimate of the path cost to an edge nodes′ given the path costs
to end nodess1 ands2. Here,y is the distance betweens1 ands′, measured as a fraction of the
length of a grid cell side.

PathCost(s′) ≈ y · PathCost(s2) + (1− y) · PathCost(s1)



Figure 4: Paths produced by classic grid-based planners (uppermost path) and Field D* (lower
path) in a150 × 60 uniform resolution grid. Darker cells represent higher-cost areas. Figure
reproduced from (Ferguson and Stentz, 2006).

As a result, Field D* is able to provide much more direct, less-costly paths than standard grid-
based planners without sacrificing real-time performance. It is also able to efficiently repair its
solutions as new information is received, for example, through onboard sensors. Figure 4 shows a
path planned by Field D* along with a classic grid-based path.

4 Integration

At the highest level, using Field D* to improve AutoNav involves two main tasks. The first is
providing terrain information to Field D* in a form it can utilize. The second is using Field D* to
generate steering recommendations in a form that AutoNav can understand.

4.1 Cost Map

Field D* uses a uniform grid as the basis of its world model. Each grid cell contains a value
which represents the cost of traversing the width of the cell. Fortuitously, this is very similar to the
goodness map representation of the world maintained by AutoNav. However, the goodness map is
always centered on the rover location, and stores only information about the local terrain. Field D*
plans on a global scale and must therefore store a much larger map. In addition, the Field D* map
is fixed to the environment and does not move along with the rover. There are also several other
key differences between the two representations. Field D* operates on cost values, where more
easily traversable terrain has a lower cost, but AutoNav stores a goodness map, where more easily
traversable terrain has a higher goodness. In addition, grid cells in the goodness map can have
“unknown” goodness. This indicates that there is not enough information about that cell location
to determine its traversability. By default, the Field D* cost map has no such value.

Using the goodness map to update the cost map is fairly straightforward. First, because there is no
notion of unknown cost, the entire cost map must be initialized to a given cost value. Initializing
all cells to a low cost means the rover will be much more inclined to explore unseen regions. On
the other hand, initializing to a high cost means that the rover will prefer to stay in regions it has
already seen. Here, a midrange cost value was chosen. Next, at each step of the traverse, the
position of the goodness map inside the larger cost map is determined. Then each goodness cell



Figure 5: The left image is an overhead view of a testbed rover in an indoor sandbox. The middle
image is the corresponding goodness map, and the Field D* cost map is shown in the right image.
Checkered cells around the perimeter of the goodness map have unknown traversability. All other
cells are colored based on a gradient between black (high goodness/low cost) and white (low
goodness/high cost). The candidate arc set is shown in black in the goodness map. Note that the
entire goodness map is presented, but only a small portion of the cost map is shown in here. Also
note that the maps are constructed in configuration space, in a local frame not aligned with the
sandbox walls.

that is not unknown is merely translated into a cost value, and placed into the corresponding cost
grid cell. For this to operate correctly, the goodness grid cells and cost grid cells must be the same
size. In addition, grid cell boundaries in the goodness map must align with those in the cost map.
These issues are addressed when the maps are created. Each goodness value is translated into a
cost value as follows. Cells with very low goodness are set to a special cost value representing
obstacle. Field D* will not plan paths through these cells. All other goodness values are inverted
and then scaled to the range of cost values to produce corresponding costs. By virtue of its much
larger map, Field D* tracks everything the rover has seen, even when it has been long forgotten
by the local goodness map. Figure 5 shows a goodness map and the corresponding portion of the
Field D* cost map.

4.2 Votes

Once the cost map has been populated, a method is needed to use Field D* to influence arc se-
lection. The output of Field D* is the cost of traversing the optimal path from any query point to
the goal location. However, the easiest way to provide steering recommendations to the rest of the
system is through arc votes. Therefore, an approach for converting costs of traversal to arc votes is
necessary.

To begin this process, Field D* is used to compute the cost of traversal from the end of each
candidate arc to the goal. Taken individually, these traversal costs mean very little. If the rover is
50 meters from the goal, the traversal cost for a given arc will be much higher than if the rover is
10 meters from the goal. This is merely due to the fact that there is much more ground to cover in
the first case. Fundamentally, arc votes are just a way of ranking the candidate arcs from best to
worst. When taken relative to each other, the traversal costs provide a similar ranking mechanism.



The arc with the lowest cost of traversal to the goal is the best and the arc with the highest cost is
the worst. Numerical vote values are assigned using a weighted sum ofvscale andvclose, which are
given in Equations 1 and 2.vmax is the maximum possible vote,cmax andcmin are the maximum
and minimum traversal costs computed during the current arc set evaluation, andci is the traversal
cost for a given arci. The minimum vote value is zero.vmax serves as a way to adjust the weight
of the Field D* votes relative the other voting modules (hazard avoidance and steering bias). The
larger the value ofvmax, the more influence Field D* votes have on the final path selected.

vscalei
= vmax ∗ (cmax − ci)/(cmax − cmin) (1)

vclosei
= vmax ∗ cmin/ci (2)

vscale is a standard linear scaling of the cost values into vote values.vclose bases vote values upon
how close the rover is to the goal. The closer the rover is to the goal, the greater the range of vote
values that is generated. When the rover is far from the goal,cmin/cmax will be close to one and all
votes will be close tovmax. On the other hand, when the rover is close to the goal,cmin/cmax will
be close to zero, and the votes will be spread from zero tovmax. Alone, vclose is not particularly
useful (especially when the rover is far from the goal), but when combined withvscale it can be
helpful. When combined withvscale, vclose serves to reduce the range of vote values when the
rover is far from the goal. This means the preference for one arc over another is less pronounced.
When the rover is far from the goal, it is not critical exactly which arc is taken (as long as the
rover is moving in generally the right direction). In this case, it may be advantageous to let the
other voting modules (steering bias and hazard avoidance) have more influence over the final arc
selection. However, as the rover gets closer to the goal, the exact arc selected is more important
and thus the entire range of vote values is utilized. Generally when combining the two vote values,
vscale receives a significantly higher weight thanvclose.

Once these votes have been constructed, they replace the waypoint votes constructed by GESTALT.
They are then combined with steering bias and hazard avoidance votes in order to select the arc that
will be followed. When constructing Field D* votes, it is possible that several arcs may have iden-
tical costs of traversal. Nothing special need occur to handle this situation. These arcs are merely
assigned equal Field D* vote values. The GESTALT arc selection algorithm handles combining
these votes with steering bias and hazard avoidance votes, as well as breaking any ties that might
occur in the final combined vote values (Goldberg et al., 2002). Once the naive waypoint votes are
replaced with those generated using Field D*, the autonomous navigation system becomes much
more robust.

4.3 Limitations

It should be noted that AutoNav (both with and without Field D*) assumes that the rover position
is known, and that candidate arcs can be executed nominally. There are cases in which these as-
sumptions are violated. For instance, on sandy slopes the wheels may slip significantly, causing
the estimated rover position to be erroneous. In addition, mechanical failure of wheel actuators can
cause arcs to be executed abnormally. In these cases, AutoNav performance may be degraded. Al-
though AutoNav makes no attempt to directly address these issues, other technologies can often be



used to overcome them. For instance, visual odometery can be used in conjunction with AutoNav
in order to maintain an accurate estimate of rover position, regardless of wheel slip (Cheng et al.,
2005).

5 Resource Limitations

The Mars rovers are constrained by very limited computational resources. The onboard computer
uses a radiation hardened RAD6K processor running at 20 MHz, and has 128 Mbytes of DRAM
(Biesiadecki and Maimone, 2006). To make matters worse, these already limited resources must
be shared among the 97 tasks (including AutoNav) that make up the on-board flight software
(Reeves and Snyder, 2005). In light of these constraints, optimizations were made to the Field
D* algorithm to improve efficiency. Specifically, the path cost minimization step of the algorithm
is pre-computed, and the results are stored in a lookup table that is accessed at runtime. This
significantly decreases the computation time required for planning. See (Ferguson and Stentz,
2006) for more details on how this is performed.

Another constraint is the limited bandwidth available to send data back to Earth. This data can
be grouped into two broad categories: engineering data and science data. Science data contains
information about Mars that is of interest to scientists. Engineering data is used to monitor the
status of the rover, and contains information that is useful should an anomaly occur. Telemetry
generated by Field D* falls into this category. Since the main purpose of the mission is to better
understand Mars, it is desirable to limit the engineering data to a minimum in order to maximize
the amount of science data that can be downlinked.

In the case of Field D*, CPU utilization, memory usage, and telemetry volume are all tied to the
size of the Field D* cost map. Larger maps mean more resource usage. Therefore, it is advanta-
geous to find ways to reduce the map size while still obtaining good path planning results. Each of
the three optimization techniques described below (automatic map re-centering, coarse resolution
maps, and map filtering) were implemented and are utilized during autonomous navigation.

5.1 Automatic Re-centering

In order for Field D* to plan a path between a start location and a goal, both the start location
and goal location must be located within the cost map. Therefore, the further the rover is from the
selected goal, the larger the map must be. In order to allow long traverses that would be infeasible
due to memory constraints, a scheme was developed to overcome this limitation. The constraint
that the user selected goal must be within the bounds of the cost map is lifted, and any arbitrary
goal location is allowed. If the goal happens to be outside of the cost map, an intermediate goal
is selected that resides on the boundary of the cost map. The intermediate goal is placed at the
point where the straight line between the current rover location and user selected goal intersects
the boundary of the cost map. However, this does not completely solve the problem. Now the rover
is being guided to a point on the edge of the map and not the user selected goal. In order for the
rover to reach the user selected goal, map re-centering is needed. During the map update phase,
if any portion of the local goodness map falls outside the cost map, the cost map is re-centered on
the current rover position.
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Figure 6: Field D* cost map and the re-centering process. The rover is represented by a white
diamond and the goal is shown as a black diamond. Re-centering is needed for the map shown in
(a). Cells common to the old and new map are copied to their new location in the lower right of
(b). Shown in (c) is the final map after cells not common to both the old and new maps have been
cleared, the cost map has been updated from the most recent goodness map, and the goal location
has been re-calculated.

Re-centering does not alter any memory allocations, but instead merely adjusts the world coordi-
nates of the map center. In order to make the map consistent with the new coordinates, grid cells
that are common to both the old map and new map are copied across the map to their new location.
All other areas are cleared to the nominal cost value. Once this is done, a new goal is placed within
the cost map. If the user selected goal is within the new map bounds, the goal is placed there. If
not, another intermediate goal is placed using the procedure outlined earlier. This re-centering and
intermediate goal placement is repeated until the user selected goal is reached. Figure 6 illustrates
the re-centering process.

This approach has some limitations. There is a performance penalty whenever the map is re-
centered. Field D* is efficient because it does not have to replan from scratch when new costs
are discovered. Instead, it is able to reuse the results of previous planning and repair the needed
paths. However, because Field D* begins its search at the goal, whenever the goal is moved, all
planning information is reset and the next path must be planned from scratch. In order to minimize
this effect, the intermediate goal is not updated every time the rover moves. Instead, a new goal
is placed only when the map is re-centered. Map re-centering is an infrequent event and therefore
the overall performance impact is minor.

There is another limitation to this approach. It is possible that the intermediate goal could be
placed inside an obstacle. When the goal is inside an obstacle, Field D* is unable to plan any
paths and will fail. However, this problem is unlikely to be encountered in practice. Usually, the
intermediate goal is ahead of the rover, in an area not yet visited. Because the rover has not seen
the terrain around the intermediate goal, that location cannot be obstacle in the cost map until the
rover is close enough to evaluate that terrain. The map is re-centered slightly before the rover can
see the edge of the map. Therefore, in general, the rover has never evaluated the terrain under any
current intermediate goal. The exception is if the rover in the process of backtracking a significant



Figure 7: Goodness map overlaid on a cost map. Goodness grid cells are outlined in gray. Cost
cells are shown in black and white. In addition to a complete goodness cell, each cost cell contains
pieces of 3, 5, or even 8 other goodness cells.

distance in order to navigate around a very large hazard. In this case, the ultimate goal is behind the
rover and the rover is driving away from it. Therefore, when the map is re-centered, the rover may
have already seen the region where the new intermediate goal is placed, and it is possible that there
is an obstacle in this region. However, for this problem to occur, the rover must be attempting to
navigate around a very large hazard, and must drive large distances. Due to rover power and drive
time constraints, the distance that the rover can traverse in a single sol using AutoNav is limited.
This limitation drastically reduces the chances of encountering this problem.

5.2 Coarse Resolution Cost Maps

Another way to manage limited memory resources is to change the resolution of the cost map grid
cells. Instead of constraining the cost map grid cells be the same size as the goodness map grid
cells, the cost map cells are allowed to be significantly larger. This allows fewer grid cells to cover
the same area, and thus results in smaller cost maps, which is what primarily dictates resource
usage. Further, because the Field D* planner is able to compute paths that are not restricted to
transitioning between grid cell centers or corners, it can be used to plan direct, low-cost paths even
in very coarse resolution grids.

Allowing for larger cost map grid cells does present some complications. Updating the cost map
from the goodness map is now more difficult. Before, there was a one-to-one correspondence
between cost and goodness grid cells, meaning that the goodness map could essentially be copied
directly into the cost map. With larger cost cells, there are multiple goodness cells in each cost
cell. In fact, there could even be fractional goodness cells in a given cost cell as shown in Figure
7. In order to simplify matters somewhat, the size of the cost cells are constrained to be an integer
multiple of the goodness cells. This avoids splitting single goodness cells across multiple cost
cells. Instead, each cost cell contains a fixed number of whole goodness cells. In this way, the
complication of dealing with fractional cells can be avoided. However, a method is still needed to
convert multiple goodness values into a single cost value.

One simple and safe method would be to use the minimum goodness value in a given cost cell
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Figure 8: Here, each cost cell contains 9 goodness cells (cost cells are outlined in heavy black).
White represents obstacle, dark gray is traversable, and light gray is the maximum traversable
cost. Coloring is by goodness value in (a) and cost value in (b) and (c). The cost map in (b) is
produced by using the minimum goodness value in each cost cell. The cost map in (c) is produced
using a more lenient update rule. If the cost cell is less than half obstacle it is set to the maximum
traversable cost instead of obstacle. Note that the corridor is blocked in (b), but not in (c).

to set the cost. In some cases this is not necessarily the best approach. Figure 8 illustrates what
can happen when a narrow corridor is encountered. By using the minimum goodness value to
update the cost value, narrow corridors in the goodness map can become completely blocked in
the cost map. One way to mitigate this problem is to employ a more lenient standard when updating
cost cells containing obstacles. Cost cells that are less than half obstacle are set to the maximum
traversable cost. Cost cells that are half obstacle or more are set to obstacle. This greatly reduces
the chances of closing off narrow corridors.

Larger cost map grid cells also require a new strategy for handling unknown goodness cells. There
is no traversability information in these cells, and previously they could just be ignored. The
situation is more complicated when there are multiple goodness cells in each cost cell. One option
for handling unknown goodness cells is to not update cost cells containinganyunknown goodness
cells. This is a less than ideal solution. A cost cell could contain many goodness cells with known
values, but if there is one unknown value, all this information will be ignored. This situation
happens frequently in cells at the edge of the cameras’s field of view. In order to fully utilize
the terrain assessment, the unknown goodness cells could merely be ignored, and the minimum
goodness of the populated goodness cells used to update the cost cell. This approach presents a
more subtle problem which is illustrated in Figure 9. During each step the rover takes, an area
around the edge of the goodness map is set to unknown. This erases old data behind the rover in
order to make room for new data in front of it. The problem arises when obstacle goodness cells
behind the rover are set to unknown, but there are still some goodness cells in a given cost cell that
have not been cleared and are not obstacle. The minimum goodness is therefore no longer obstacle,
and if the minimum goodness is used to update the cost cell, the cost will be changed from obstacle
to traversable. This causes Field D* to forget about obstacles, which is highly undesirable.

The solution to these problems is to make use of another value that is stored as part of the local
terrain map. In addition to a goodness value, each goodness cell contains a certainty value as well.
If the certainty is not zero, then the grid cell is in the current field of view and was just updated. It
acts as a sort of new data flag. Therefore, if there is no certainty in a given cost cell, it is probably
an old cell that is behind the rover. In this case, the first approach is utilized, which is to not update
the cell if it has any unknown goodness. This avoids forgetting data in the cost map. On the other
hand, if there is certainty in a given cost cell, it contains new data and is probably in an area that
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Figure 9: Here, each cost cell contains 9 goodness cells (cost cells are outlined in heavy black).
White represents obstacle, gray is traversable, and checkered cells are unknown. The goodness
and cost maps for one step are shown in (a) and (b) respectively. Similarly, (c) and (d) are for
the next step. Between steps, the rover has moved up to the left. The cost maps are produced
using the minimum goodness value that is not unknown. Note that as the rover moves, obstacles
are forgotten from the goodness map, and using this update strategy these obstacle cells are set to
traversable in the cost map.
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Figure 10: Goodness map filtering. Obstacle cells are shown in white. The goodness map in (a)
contains regions completely surrounded by obstacle cells. Planning time is greatly increased when
arc endpoints fall in these regions. All cells reachable from the rover location are shown in dark
gray in (b). Note that the regions surrounded by obstacle are not marked as reachable.

hasn’t been seen before. For these cells, the second approach is used, and the cost is updated using
the minimum goodness value. In this way, new terrain assessments are added to the cost map as
early as possible.

5.3 Map Filtering

In certain situations, the planning process for a given drive step can take more than an order of
magnitude longer than usual. Recall that Field D* is used to plan a path from each arc endpoint
to the goal. Also recall that Field D* will not plan paths through obstacle cells. If an arc endpoint
happens to fall in an obstacle cell, the algorithm immediately returns, indicating that there is no
path to the goal. However, planning time can swell if an arc endpoint falls in a non-obstacle region
completely surrounded by obstacle cells, as shown in Figure 10(a). This is an artifact of how the
planning process is carried out. The search begins at the goal location and expands outward. When
the start state (the arc endpoint in our case) is reached, the search terminates and the path cost
is returned. Unfortunately, when an arc endpoint falls into a small region completely surrounded
by obstacles, it is in fact unreachable. In order for Field D* to make this determination, every
reachable state in the cost map must be expanded. Instead of the usual relatively few states being
expanded, all states in the cost map are expanded, significantly increasing the planning time. This
explosion in usage of already limited CPU resources is clearly undesirable.

In order to solve this problem, the goodness map is filtered before it is used to update the Field D*
cost map. A flood fill algorithm is used to identify all cells in the goodness map reachable from the
current rover location. The rover location is first marked as reachable. Then each adjacent (eight-
connected), non-obstacle cell is added to a list for later processing. Next, a cell is removed from
the list, marked as reachable, and its new non-obstacle neighbors are added to the list. This repeats
until the list is empty, indicating that all cells reachable from the rover location have been identified,
as shown in Figure 10(b). Finally, all non-reachable, non-obstacle cells are set to obstacle. By
doing this, arc endpoints that would have been problematic now end in obstacle cells. In this case,
no planning is necessary to determine that no path to the goal exists.



Figure 11: MER Surface System TestBed rover in an indoor sandbox at JPL.

Even though map filtering is done during every map update, in the long run it still saves time. As an
added benefit, it also allows for much more consistent and predictable planning times. There are a
couple of reasons why map filtering at every step is much faster than letting Field D* occasionally
expand the entire cost map. First, map filtering is done on the goodness map, which is much
smaller than the Field D* cost map. In addition, the simple flood fill check for reachability takes
much less time than the full Field D* planning process. In fact, the time necessary to filter the
goodness map is negligible when compared even to the nominal planning time necessary for each
drive step.

6 SSTB Results

The MER Surface System TestBed (SSTB) was used to extensively test flight software modifi-
cations. The SSTB is a high-fidelity engineering model of the Mars Exploration Rovers. It is
essentially identical in form and electromechanical function toSpirit andOpportunity, with a few
minor exceptions. The SSTB has no solar panels, and some of its electronics are housed in an ad-
jacent clean room. A physical tether provides a link between the rover and these electronics. The
tether also provides power to the rover. The SSTB is housed in an indoor sandbox approximately
9 meters wide and 22 meters long (Litwin, 2005). A ramp tilted at 25 degrees occupies one end.
The SSTB and its test environment is shown in Figure 11.

GESTALT alone performs well in simple situations, including navigation in areas free from hazards
and navigating around small discrete obstacles. However, the real strength of Field D* is navigation
in much more complex situations. Unfortunately, the relatively small size of the sandbox makes
constructing complex obstacle arrangements difficult. Testing was limited to this environment for
several reasons. The SSTB was the only available system with enough fidelity to perform flight
software testing requiring imaging and driving, with the driving decisions based upon imaging
results. It was infeasible to move the rover to a larger outdoor environment due to the tremendous
effort that would be necessary to move all the support equipment needed to run the rover (remember
that most of the rover electronics are actually housed in a clean room adjacent to the sandbox).
However, even in the limited sandbox environment, constructing situations for which GESTALT
alone fails to reach the goal is not difficult. For instance, navigating around a cul-de-sac obstacle
arrangement is nearly impossible for GESTALT alone. Figure 12 illustrates a situation with not
one, but two cul-de-sacs. Due to the limited size of the sandbox, the goal is placed outside the



sandbox and is not actually reachable. Figure 12(a) shows the initial position of the rover. The
rover begins by driving straight into the first cul-de-sac. The rover reaches the bottom of the cul-
de-sac in Figure 12(b). Up to this point, the behavior with and without Field D* was roughly
equivalent. However, with GESTALT alone the rover became stuck here. Field D*, on the other
hand, plans a path around the first cul-de-sac and into the second. The rover is then guided into
the second cul-de-sac as shown in Figure 12(c). Once the determination is made that there is no
route through the second cul-de-sac, the rover drives back toward the only unexplored region of
the sandbox as shown in Figure 12(d). Eventually Field D* fails, indicating that no paths to the
goal exist.

Over the course of testing, Field D* was used to guide the SSTB toward roughly 100 different
goal locations. Initially, a variety of simple tests were completed. In an obstacle free setting, the
rover was placed at a variety of different initial headings relative to the straight line to the goal.
Navigation through a field of traversable rocks was tested. Navigation around a single rock in
various positions relative to the path between the rover and the goal, and navigation between two
rocks separated by a variety of distances were also tested. More complex obstacle arrangements
in which GESTALT alone would almost certainly fail to guide the rover to the goal were tested as
well. Situations were constructed necessitating navigation into and out of single or multiple cul-
de-sacs. In addition, lines of rocks were used to produce an arrangement similar to the one shown
in Figure 2. Overall, the performance was extremely good. In the vast majority of cases the rover
was able to reach the goal when Field D* was used, and performance in the simple test cases was
at least as good as with GESTALT alone. Surprisingly, one of the biggest problems faced during
testing was goal placement. If the goal is placed in an obstacle cell, Field D* is unable to plan any
paths. When the rover gets close enough to the goal to determine it is in an obstacle cell, Field D*
will fail. Although the rover does not reach the goal, this should not necessarily be considered an
AutoNav failure. In these situations the goal location is not safe, and the rover should not drive onto
it. Due to the very limited space in the sandbox, squeezing the goal location into a safe area (after
all obstacles have been expanded by the rover radius) was sometimes a challenging proposition.

With Field D*, the rover is able to explore the environment much more fully when attempting to
locate a path to the goal. This allows the rover to almost always arrive at reachable goals. The
downside, of course, is the increased resource utilization required. For Field D*, the additional
CPU time and memory usage are fairly minimal. Much of the testing was done using 50 m x 50
m cost maps. The cost cells were 40 cm x 40 cm, which is twice the resolution of the goodness
cells. Almost no difference was noticed in rover behavior when moving from 20 centimeter to
40 centimeter cost cells. With these settings, Field D* utilizes less than 1 Mbyte of memory. In
addition, each drive step takes only about 3 percent longer when Field D* is enabled. Even with
these very modest requirements, Field D* is able to significantly improve on-board autonomous
navigation capability.

7 Mars Surface Testing

Before being approved for general use on Mars, Field D* underwent five carefully planned check-
outs. The checkouts were designed to incrementally verify that the software works as expected,
beginning with very basic, low risk tests and moving toward a complete confirmation of all fea-
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Figure 12: Field D* assisted hazard avoidance using the SSTB. The left image is an overhead view
of the sandbox. The middle image is the local goodness map, and the image on the right is the
Field D* cost map. Note that the entire goodness map is shown, but only a portion of the cost
map is included. Checkered cells have unknown traversability. All other cells are colored based
on a gradient between black (high goodness/low cost) and white (low goodness/high cost). The
checkered line on the cost map is the path planned between the rover and the goal. The size of
each goodness cell is 20 cm x 20 cm. Each cost cell is 40 cm x 40 cm.



tures. These tests were not only designed to verify that Field D* operates correctly, but also to
ensure that other software modules function as expected when Field D* is enabled. All tests were
performed onOpportunity, due to the non-functional drive motor onSpirit’s right front wheel. This
broken actuator results in the wheel being locked in the brake position, which makes driving much
more challenging. The position of a rover after a commanded arc is highly dependent upon terrain
interaction. With one locked wheel,Spirit generally experiences a significant level of slip. This
makes position estimates based upon wheel odometry unreliable, and therefore visual odometry
is almost always used to obtain more accurate position estimates (Cheng et al., 2005). Unfortu-
nately, due the slow speed of the processor on board the rovers, the time needed to compute visual
odometry updates significantly limits how farSpirit can drive in a single sol. AutoNav is generally
used when traversing areas not yet seen by engineers on Earth. It is a very rare occasion thatSpirit
drives far enough in a sol to necessitate activating AutoNav. This, combined with the fact that
commanded arcs (including those selected by AutoNav) are rarely executed as expected (due to
the right front wheel being dragged), makesSpirit a poor choice for Field D* testing.

Although most of the testing on SSTB was done using the belly mounted hazard avoidance cam-
eras,Opportunitygenerally uses the navigation cameras on the mast when driving autonomously.
The region of Mars whereOpportunityis located is generally very sandy with few rocks. The haz-
ard avoidance cameras are unable to pick up the fine texture of the sand, and therefore the stereo
correlator has few features to match upon. As a result, stereo range maps are often extremely
sparse. The navigation cameras, on the other hand, are higher resolution and able to pick up the
sand’s fine texture. The downside is that the field of view is much narrower for the navigation
cameras. Whereas the hazard avoidance cameras can see almost 180 degrees, the navigation cam-
eras are limited to about 45 degrees. However, it is possible to capture multiple navigation camera
images with different camera pointings to fill in a larger field of view. Of course stereo processing
must be run on each image pair which can significantly slow the rate at which the rover can drive.
In order to help speed things up, the rover does not have to update its map after every single drive
step. The rover can drive for a limited number of steps without imaging, provided it has not located
any obstacles nearby. When doing this, the rover still generates votes at every step in order to select
the next arc, but does not update its world map. Instead, it must stay within the area deemed safe
in the most recently available map. This technique can significantly increase the speed at which
the rover is able to drive autonomously. For each checkout, a 50 meter by 50 meter cost map was
utilized, with a grid cell resolution of 40 centimeters. The local goodness map was 12 meters by
12 meters with a grid cell resolution of 20 centimeters.

7.1 Checkout One: Backseat Driver

On sol 1014, Field D* was run for the first time on Mars. For this initial test, Field D* was placed
in a special “backseat driver” mode. In this mode, Field D* builds a cost map, does its planning,
and creates its votes. However, these votes are not actually used to influence the arcs selected and
executed by the rover. Instead, the standard autonomous navigation system is in complete control,
and does not use any information generated by Field D*. The Field D* telemetry (including cost
maps, and votes) is sent back to Earth, where engineers can verify that Field D* was operating
nominally and generating appropriate steering recommendations.

The first checkout was conducted in a very flat area completely free from hazards. This was done
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Figure 13: Cost map from the first Field D* checkout. The Field D* cost map from the final step
is shown in (a). The rover is depicted as a white diamond and the goal as a checkered diamond.
The dark areas were imaged and determined to be safe by the rover. The white regions are keepout
zones used to keep the rover away from Victoria Crater. An orbital image captured by the Mars
Reconnaissance Orbiter is shown in (b), along with an overlay of the Field D* cost map.Courtesy
NASA/JPL-Caltech

to minimize risk to the rover should something go wrong with the test. A goal was chosen twelve
meters straight ahead of the rover with a tolerance of 2 meters, for an expected drive of 10 meters.
Only a single heading for the navigation camera was used when updating the map, and the rover
was allowed to drive up to 4 steps of 50 cm each per map update. Generally, a single navigation
camera heading provides too limited a field of view, and is insufficient for driving through unknown
terrain. However, in this case, the rover was driving through terrain known to be completely safe,
and therefore a fixed camera pointing for each update was sufficient. Figure 13 shows the final
Field D* cost map. The map was updated 6 times during the traverse, and a total of 21 drive steps
were taken before successfully reaching the waypoint. The dark areas represent the region imaged
and filled in during the traverse. The white regions are keepout zones set by engineers on earth.
Keepout zones are areas that should be avoided by the rover. Should the rover ever accidentally
stray into one, the mobility software will prevent any further driving. These keepout zones were
placed to prevent the rover from getting too close to the edge of Victoria crater should something
go wrong. Although Field D* was not in control of the rover during the test, all other subsystems
functioned nominally with the Field D* software running. All Field D* telemetry was generated
as expected. During the majority of steps, the Field D* votes were highest for the straight ahead
arc. In every other case, the strongest preference was for the shallowest right or left turn. This is
exactly as expected and the checkout was deemed a success.

7.2 Checkout Two: Phantom Hazard

The second Field D* checkout was run on sol 1082. This was the first time Field D* was actually
used to influence the drive path taken by the rover. The test was setup to verify hazard avoidance
capability without placing the rover in danger should something go wrong. The test was done



in an area completely free from of hazards, however a 2 meter wide keepout zone was added
approximately 5 meters straight ahead of the rover. The autonomous navigation system treats
keepout zones like any other hazard and attempts to drive around them. A waypoint was selected 9
meters straight ahead of the rover on the opposite side of the keepout zone. Generally, using only a
single navigation camera pointing direction to update the map is insufficient when driving through
hazardous regions. In order to save time, and because the area was completely free from any real
obstacles, a fixed pointing for the navigation camera was used for each update. As in the first test,
the rover was allowed to drive up to four 50 centimeter steps between map updates.

The first half of the drive went well. The rover immediately selected a path to the right and
turned slightly throughout the first half of the drive in order to safely get around the keepout zone.
However, during the second half of the drive, the rover did not turn back toward the goal as sharply
as expected. Figure 14 shows an overhead view of the drive. Notice that during the second half of
the drive, the rover did not take a course directly back toward the waypoint. However, it did turn
back enough that it was able to successfully come within the specified 2 meter tolerance around
the goal. There are a couple of reasons for this behavior. The first was the limited field of view
caused by using only a single image to update the navigation map. The autonomous navigation
system will not allow the rover to drive into regions that it has not seen and verified to be safe.
Turning sharply can quickly move the rover out of the narrow region verified to be safe. This is not
allowed, and thus the arc set available for execution was significantly restricted. The second factor
impacting the shallow turning during the latter half of the drive was the incorrect setting of one of
the Field D* parameters. This parameter was thought to have been changed to the correct value
on a previous sol when many of the other navigation parameters were set. It was discovered late
in the planning process (too late to correctly set the parameter) that this was not the case. Since
there was no risk to vehicle safety from this parameter setting, it was decided to go ahead with the
checkout instead of pulling the whole thing. This parameter setting lead to suboptimal sampling of
the arc endpoints, and contributed to the shallow turns at the end of the drive. Part of the checkout
process is to uncover and correct these kinds of issues.

7.3 Checkout Three: Everything Together

The third checkout was the most difficult for a variety of reasons. The purpose of this checkout
was to ensure that Field D* could be used to avoid obstacles detected by GESTALT. It was difficult
to locate a suitable area for this test. All of the checkouts were performed asOpportunitymade its
way around the rim of Victoria Crater. Unfortunately for this checkout, there are very few rocks in
this area. It’s mostly an extremely flat, sandy plain. This test required a rock short enough to be
safely driven over, but tall enough to be detected as an obstacle. By using such a rock, if something
were to go wrong with the test and the rover did not avoid the hazard, no damage would be done.
Fortunately,Opportunityhappened upon a small crater surrounded by a variety of rocks (see Figure
15). Usually the obstacle detector classifies objects taller than 20 centimeters as obstacles. For this
test, that threshold was lowered such that the rocks to the right of the crater were classified as
obstacles.

This checkout was conducted on sol 1160. A goal was chosen 11 meters straight ahead of the
rover, on the other side of the crater. Keepout zones were added to cover the crater, as well as some
of the larger rocks. The rover would have been able to detect and avoid these obstacles on its own,
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Figure 14: Maps from the second Field D* checkout. An overhead view of the drive is shown in
(a). The white regions are keepout zones, and the light gray dots show the path taken. The dark
gray circle represents the goal location and its 2 meter tolerance. The initial and final Field D* cost
maps are shown in (b) and (c) respectively. The checkered line shows the path planned by Field
D*, and the white regions are keepout zones. Note the keepout zones completely surrounding the
test area in order to keep the rover from straying too far off course if something were to go wrong.

Figure 15: Location of the third check out. Hazard detection parameters were modified in order to
make the small rocks to the right of the crater appear to be obstacles.
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Figure 16: Cost maps from the third Field D* checkout. The initial and final cost maps are shown
in (a) and (c) respectively. A map from the middle of the drive is shown in (b). The checkered
line represents the path planned by Field D*, and the white regions are hazards. The dark areas are
safe.

but because this was a checkout, keepout zones were added for an extra level of safety. Because
the rover needed to drive around detected obstacles, two navigation camera pointings were used
to update the maps at each step. Imaging to update the navigation map was done before each and
every 50 centimeter drive step. In addition, visual odometry was used to more accurately track
the rover’s position during the drive. This was done in order to facilitate precise pointing of the
cameras at the end of the drive in order to capture imagery of a science target. Combining keepout
zones, stereo vision, hazard detection, navigation with Field D*, and visual odometry represents
the largest simultaneous use of autonomy on either rover to date.

Cost maps from this checkout are shown in Figure 16. From the start, the area several meters
ahead of the rover is identified as hazardous. For the first 5 drive steps, the rover selected a series
of moderately sharp right turns to avoid these obstacles. For next 8 steps, the rover drove almost
straight, using a sequence of very slight left turns to follow the contour of the detected hazards.
Next, a series of 7 slightly sharper left turns were used to turn back toward the goal location as the
rover makes it’s way around the end of the rock field. With the goal almost straight ahead, the rover
selected nearly straight arcs for the final segment of the drive. The rover was commanded to drive
to within 2 meters of the goal location. However, the allotted time for the drive ran out with the
rover 3.3 meters from the goal (all that autonomy takes a lot of time!). Before driving away from
the test site on sol 1162, a panorama was taken looking back on the drive path (Figure 17). Overall
the checkout went flawlessly, with the rover smoothly and efficiently making it’s way around the
hazards and toward the goal. In addition, without Field D* there is a significant possibility that the
rover would have become stuck at the leading edge of the rock field, unable to find its way around.

7.4 Checkout Four: Going the Distance

With the ability to safely navigate around hazards verified, it was time to test a long distance drive.
This checkout had several purposes. The first was to verify that there was no degradation in system



Figure 17: Mosaic looking backward on the tracks of the third Field D* checkout.Courtesy
NASA/JPL-Caltech

performance over many steps. This checkout would also verify that a goal location outside the
bounds of the Field D* cost map could be chosen without problem. Finally, the ability to recenter
the cost map as the rover reached the edge of the map would also be tested. On sol 1188, a 40
meter drive was planned, which was broken up into two 20 meter segments. In between the two
segments, a wheel slip test was performed. The immediate area around the rover was flat and free
from hazards, but due to the length of the drive, it was difficult to verify there were no obstacles
near the goal location. Therefore, it was assumed that the rover might encounter obstacles that it
would need to autonomously avoid. That being the case, two navigation camera pointings were
used for each map update, and the rover was allowed to drive only three 50 cm steps between map
updates.

The drive began with the rover facing the goal location. During the first 20 meter drive segment,
Field D* consistently preferred straight arcs or very slight turns. However, the drive path actually
taken by the rover was not exactly straight. On several different occasions the hardest right or left
turn was taken. This was due to the sharp turn correction feature built into the vote arbitrator. If
the sharpest turn is included in the set of highly ranked arcs, then it is selected. Generally, this
feature helps the rover aggressively turn to get around obstacles, but it also sometimes leads to
the weaving behavior seen here. Figure 18 shows the view from the rear hazard avoidance camera
after the first leg of the drive. Note the snaking drive path in the distance.

At this point in the drive, the slip check was conducted. During a slip check, the rover is com-
manded to drive a short distance, and visual odometry is used to measure the actual distance that
was traveled. If the rover didn’t make enough progress, then no further driving is allowed. Slip
checks are done at regular intervals in order to ensure that the rover isn’t getting bogged down and
digging itself further and further into a sand trap. Visual odometry works by tracking image fea-
tures between frames in order to estimate rover motion. Unfortunately, the flat, mostly featureless
plains around Victoria Crater make finding features difficult. Here, the rover’s own tracks are usu-
ally the only workable features. Therefore, the navigation cameras are usually pointed toward the
tracks for the slip check. Alas, the last drive step before the slip check happened to be the sharpest
left turn. This meant that the tracks were no longer directly behind the rover as expected, and were
not in the field of view when visual odometry was run. Not finding any features, visual odometry
failed to produced a motion estimate during the slip check. Because it could not be determined



Figure 18: Image capture by the right rear hazard avoidance camera following the fourth checkout.

whether or not the rover was bogging down, no further driving was allowed.

Even though only half of the planned drive was executed the test was deemed a success. Fortu-
nately, right before the last step, the Field D* map was re-centered. This meant that all objectives
of the test had been completed. Figure 19 shows the cost map before and after the map was recen-
tered.

7.5 Checkout Five: Preconceived Notions

Usually, the rover begins with a blank map, which is updated as the rover sees new areas. However,
it is also possible to create an initial map on Earth and upload that to the rover. This can give the
rover a better idea of what’s coming up beyond its detection range or field of view. The map is
still updated autonomously based upon what the rover senses, however a more accurate initial map
can help the rover plan better paths. The purpose of the fifth and final checkout was to verify this
map upload ability. This test was done on sol 1200, following a 60 meter blind drive. Since the
area in which the checkout was to take place was so far away, it was difficult to say for certain
the area was hazard free ahead of time. Therefore the standard setup for driving through possibly
hazardous terrain was used (two navigation camera pointing directions for each map update, and
no more than three 50 cm steps between updates). Figure 20 shows the map that was created and
uploaded to the rover. Victoria Crater was off the right side of the map, and therefore an obstacle
region was added along that side of the map. A goal was chosen straight ahead of the rover, off the
bottom of the map. Obstacles were placed in the map between the rover and the goal. This was
done with the expectation that the rover would make right hand turns in order to get around the
end of this obstacle region. This would serve as verification that the map was in fact being utilized
in the path selection process.

This drive was limited to ten 50 cm steps. The drive began with the rover taking a sharp right hand
turn. For the rest of the drive, Field D* preferred shallow to moderate right had turns in order to
line the rover up to navigate around the end of the obstacle region. This test was deemed a success.
The downlinked map data products clearly showed that the map had been loaded as expected. The
fact that the rover turned right during the drive demonstrated that the rover was influenced by the
uploaded map and the obstacle regions placed far beyond its detection range.
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Figure 19: Cost maps from the fourth Field D* checkout. As the rover approaches the edge of the
map (a), it is autonomously recentered on the rover position (b). The planned path is shown as a
checkered line (the goal was selected outside the map bounds). The white region is a keepout zone
placed between the rover and Victoria Crater. The dark areas were verified safe by the rover during
its traverse.

Figure 20: Field D* cost map uploaded to the rover for the fifth and final checkout. The initial
rover position is represented as a white diamond. The path planned by Field D* is shown as a
checkered line. White areas are obstacles and dark regions are safe.



With all five checkouts completed successfully, Field D* was approved for everyday usage. Shortly
thereafter,Opportunityentered Victoria Crater. The high slopes along the ingress path necessitate
very cautious driving. Therefore the drives are generally fairly short, and it would be imprudent to
drive beyond the areas that had been fully seen and analyzed by engineers on Earth. This makes
autonomous navigation with hazard avoidance unnecessary, and Field D* has yet to be used on
Mars (as of sol 1520) beyond the checkouts. However, once the Victoria science campaign is over
and the rover leaves the crater, it is likely Field D* will prove useful for long drives across the
plains.

8 Conclusions

Autonomous hazard avoidance by the Mars Exploration Rovers using the GESTALT local planner
keeps the rovers safe and works well in the presence of simple discrete obstacles. However, it
is susceptible to failure when more complex hazard arrangements are encountered. In order to
address this shortcoming, the hazard avoidance system was augmented with a global path planner.
Field D* was integrated into the MER flight software and uploaded toSpirit and Opportunity
during the summer of 2006 as part of a significant software upgrade. Field D* assisted hazard
avoidance was extensively tested using the SSTB before the upload, and has been validated on the
surface of Mars. Obstacle avoidance is at least as good as with GESTALT alone, and in many cases
much better. Field D* allows the rover to much more robustly navigate around hazards. With Field
D*, the rover is less prone to getting stuck and can reach long range goals even when faced with
complex hazards.
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